EETimes Seminar- Circuit Protection for Power Management

Sept, 2017 Adam Lin

Agenda

- Circuit Protection
 - What is it ?
 - Where is it used ?
 - The Basic Parts
- Device Features/Options
 - Inrush, Fault, FET SOA
 Protection, OV, UV etc.
- Common Design Errors
- Common Test Errors

Circuit Protection – What is it ?

- Many things with many names
 - Inrush Control
 - Hotswap
 - Hotplug
 - Current Limiting
 - Electronic Circuit Breaker
 - Short Circuit Protection
 - Soft Start
 - Over Voltage Protection (OVP)
 - <u>– eFuse</u>
 - Load Power Limiting
 - FET SOA Limiting (Protecting the Protector !)
 - Reverse Current Protection (ORing)
- Often Required for Agency Rating
 - UL, CSA North America
 - EN, IEC, (CENELEC) Europe
 - CCC Mark (CNCA) China

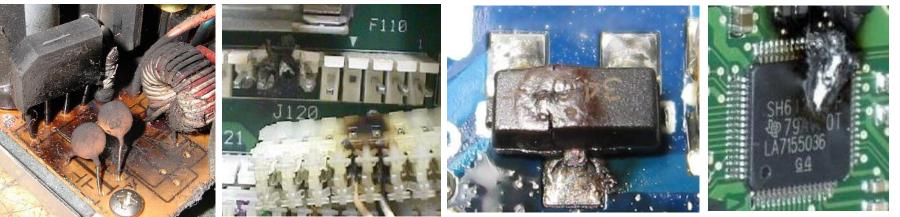
~ the same functions

Circuit Protection – Where Is It Used ?

- Telecom Equipment
- Datacenters / Servers
- Storage / HDD, SSD, Midplanes
- Industrial Control
 24 or 48 V typically
- Tower Mounted Antennas
- Merchant Power

Circuit Protection – What is it ?

Circuits designed specifically to....

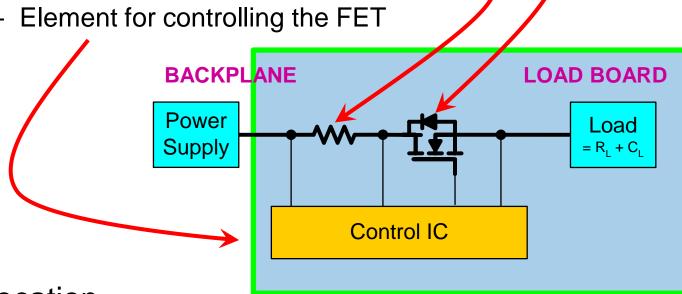

- Prevent Fire ! -- "Keep the smoke in!"
- Keep small problems from growing big
 - Minimize damage by quickly isolating failures
- Prevent potentially disruptive power bus disturbances
 - One small transient can take down/reset an entire system

• What Gets Protected ?

SUPPLY CONNECTORS

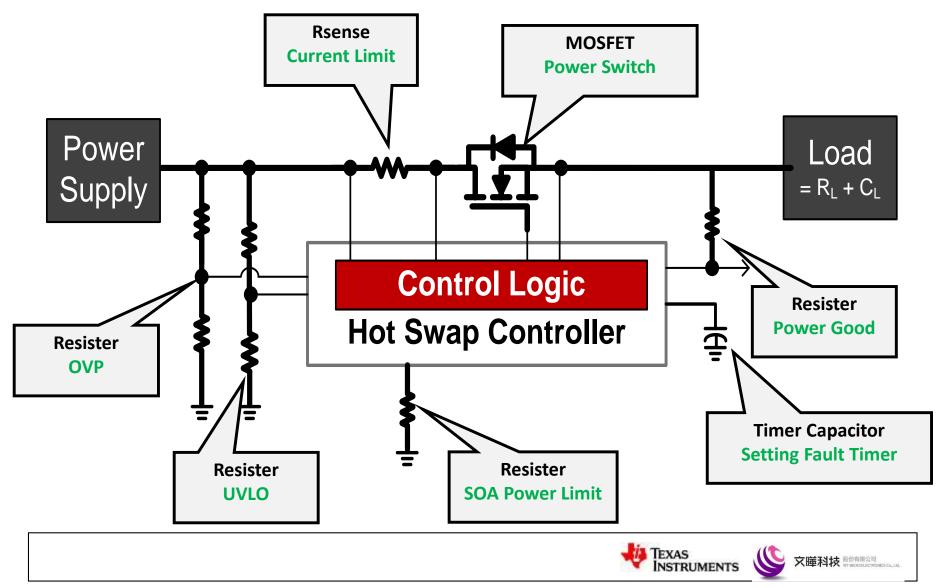
POWER FET

LOAD



Circuit Protection – The Basic Parts

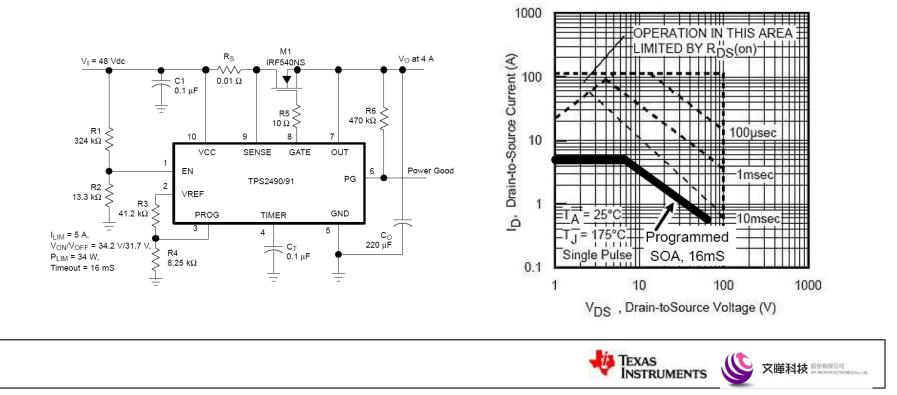
- Most Common Elements ۲
 - Element for modulating current
 - Element for sensing current
 - Element for controlling the FET



- Location. •
 - Sometimes on the Load Side of the Connector
 - Sometimes on the Supply Side of the Connector

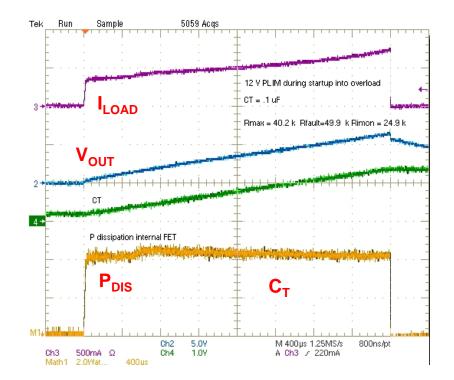
Hot Swap Controller Circuit - Function

Device Features/Options Some of the Choices


- FET Internal or External
- Inrush control dV/dT, or di/dT
- Current Limit Always, Never, or just at startup
- Fault response Latch off or Retry
- Short Circuit Response Latch Off or Retry
- **Control I²C or Analog Control**
- Outputs Power Good, Fault, FET Fault
- I_{LIMIT} Accuracy 20% Standard, 10% Pretty Good, 5% Very Good
- FET SOA protection.. Or not
 - Allows use of smaller FET and provides very high survivability
- Current Indicator Output (IMON) Analog or Digital Output ?
 - Digital Output requires internal ADC and typically includes PIV Monitoring
- ORing Control Linear or Hysteretic


Device Features/Options FET SOA Protection

- One of the least understood but most appreciated features
- Allows use of smaller, less expensive FETs
- Analog multiplier calculates P_{DIS FET} in real time and compares result to PROG pin
- If P_{LOAD} > PROG then gate drive reduced to lower I_{LOAD} and P_{FET}


Device Features/Options FET SOA Protection

- Dynamically adjusts I_{LIMIT} to be approximately proportional to $1/(V_{\text{DS}})^2$
- Limits P_{DIS} of fet to programmed limit

Device Features/Options FET SOA Protection – Startup into overload

- SOA protection keeps FET safe even when starting up into a severe overload
- Fault timer limits T(ime) factor of SOA
- Some competitive devices will reduce I_{LIMIT} over a limited range and with limited protection.

TPS2420 Startup into overload

Typical Inrush/OCP Design Steps

- 1. Select R_{SENSE} to set I_{LIMIT} and $I_{FASTTRIP}$
 - $I_{\text{LIMIT}} = V_{\text{TH}}/R_{\text{SENSE}}$ V_{TH} typically 25 50 mV
 - + Simplest controllers have fixed V_{TH}
 - High $V_{TH} \rightarrow$ Better Accuracy but Higher I²R Losses
 - Fast trip (Short Circuit) threshold usually 1.5x -3x I_{LIMIT} Level
- 2. Select C_{FAULT} to get desired T_{FAULT}
 - Set T_{FAULT} long enough to allow all caps to charge (T_{CHARGE}) before time out
 - $T_{CHARGE} \sim CV/I$ (C = Bulk Cap, V = V_{OUT}, I= I_{LIMIT})
 - Set T_{FAULT} as short as possible to limit FET stress during overcurrent events
 - Ensure that $T_{FAULT} \ge V_{IN} \ge I_{LIMIT}$ is within SOA curve
- 3. Select FET that can withstand $T_{FAULT} \times V_{IN} \times I_{LIMIT} \times \sim 1.5 \dots SOA !!$
- 4. Set FET SOA Power Limit on devices so equipped
 - Design tools available for some devices check webpage
 - TPS24700/10/20, TPS2490/1/2/3, TPS2480/1, LM5064/6/7/9, LM25061/6/9

TEXAS INSTRUMENTS

Common Design Errors

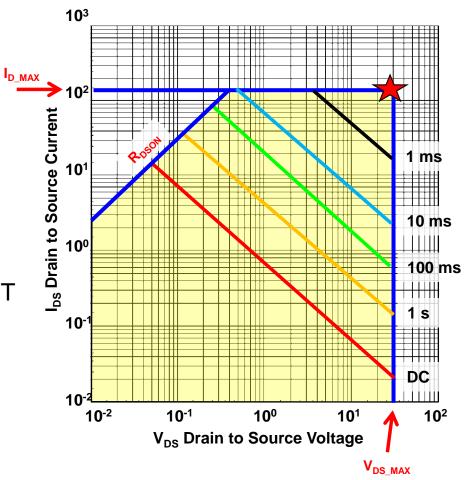
1. SOA of FET too Small

2. Layout Issues

3. Inadequate Transient Protection

Common Design Errors SOA of FET Too Small

SOA = Safe Operating Area

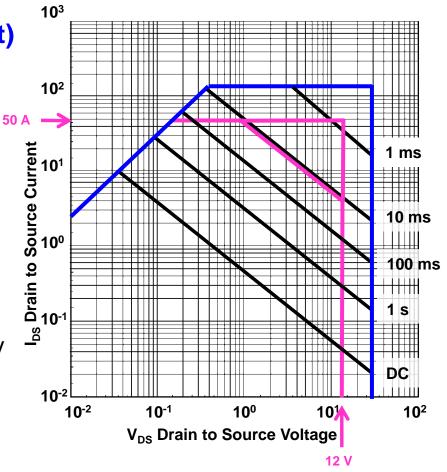

- SOA Chart Every FET has one
- Defines Bounds of FET Operation
- V_{DS_MAX} = Vertical Limit
- I_{D_MAX} = Horizontal Limit
- R_{DSON} limits I_D at lower voltages
- **Theoretical** $P_{MAX} = 3000 \text{ W}$

Fault Time Is Critical

- Longer Fault time means bigger FET
- Shorter Fault Time allows higher peak power

Most Stressful FET Events

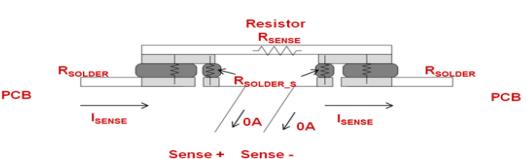
- Startup into short
- Shorted load while under full load

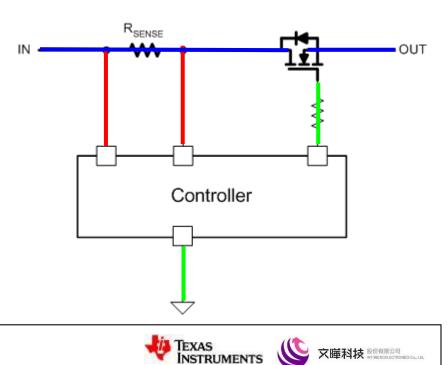

Common Design Errors SOA of FET Too Small - Example - 12 V, 50 A Server

- P_{MAX} = I_{LIMIT} x V_{SUPPLY} = 600 W
- T_{SOA_MAX} = ~800 us

With Power Limiting

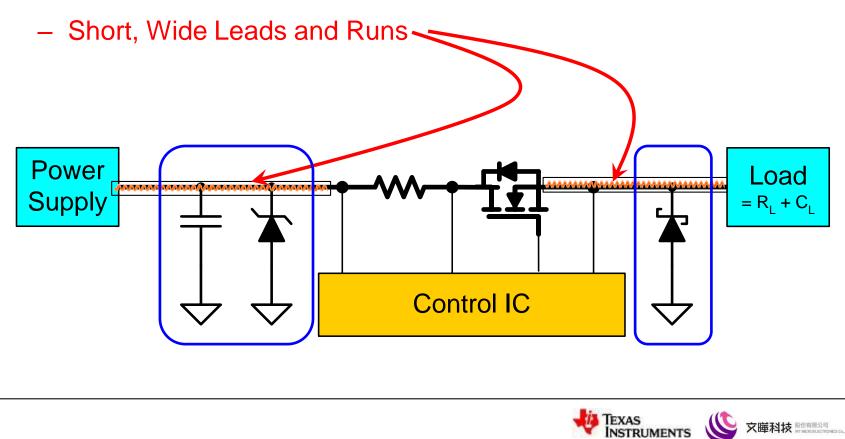
- $P_{MAX_LIMITED} = 50 W$
- As V_{DS} increases I_{LIMIT} is reduced
- T_{SOA_MAX} = 10 ms
- Smaller FET can be used
- @ 50 A will start limiting when V_{DS} > 1V
- Common Error to Pick FET Too Small





Common Design Errors Layout Issues - A Little Stray R Can Make a Big Error

- Critical Kelvin Connections
 - Sense Runs
- Critical Short Run
 - Ground
 - Gate
- High Current Runs
- Poor Kelvin Runs...
 - Inaccurate/variable I_{LIMIT}
- Poor High Current Runs
 - Voltage droop
 - Power loss
 - Overheating


Common Design Errors Inadequate Transient Protection

- All wires are inductive
- Inductance stores energy $E = \frac{LI^2}{2}$
- · When the FET turns off, voltage spikes occur

$$V = L \frac{di}{dt} \qquad \frac{di}{dt} \Rightarrow \infty$$
Positive Spikes at Input to Switch/FET
Negative Spikes at Output of Switch/FET
$$\int \frac{di}{dt} = \int \frac{di}{dt} =$$

Common Design Errors Inadequate Transient Protection

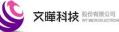
- To resolve inductive spikes from supply / load leads
 - Caps and/or TVS at Input to clamp positive spike during hot plug
 - Schottky Clamp output negative spike during output short circuit

Common Test Error Sources

1. Electronic Loads

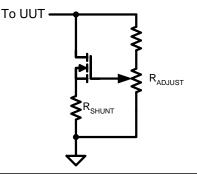
2. Transients From Long Supply Leads

3. Supply I_{LIMIT} Too Low

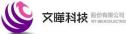


Common Test Error Source 1 Electronic Loads

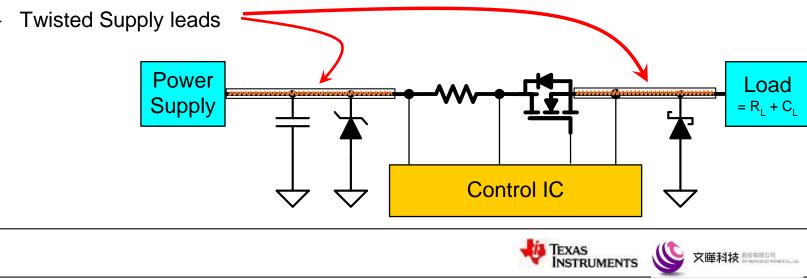
- Electronic Loads
 - Good for DC Loading and Automated Tests
 - Proper Setup Very Important
 - Ex. Constant Current, Constant Power, Constant Resistance
 - but....
 - Often Have Switch Transients When Stepping Load
 - Transients Can Cause Premature Trip When Measuring ILIMIT



Common Test Error Source 1 Electronic Loads


- For Minimal Transients While Adjusting Load
 - Method One Use Power Resistors as Loads
 - A bit tedious and Old School... but accurate
 - A collection of fixed and variable resistors is best
 - Apply "Last Half Amp" With Small Wire Rheostat
 - Can be effective with eLoads also

- Method Two Use Power FET as Load
 - Connect FET and Series Resistor as Load
 - Adjust Potentiometer to vary Current
 - Make Sure the FET can Handle the power !!!!



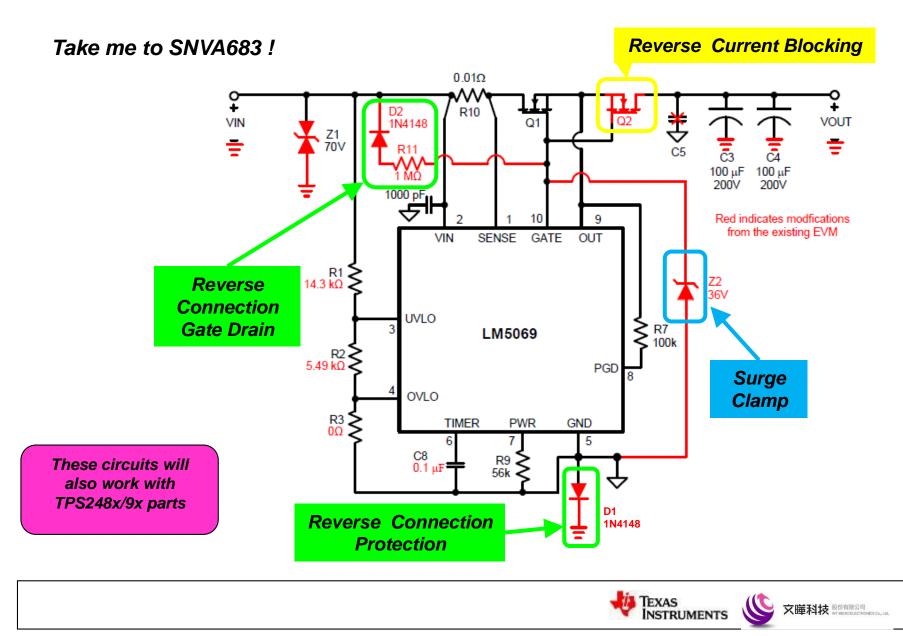
Common Test Error Source 2 Long Supply Leads

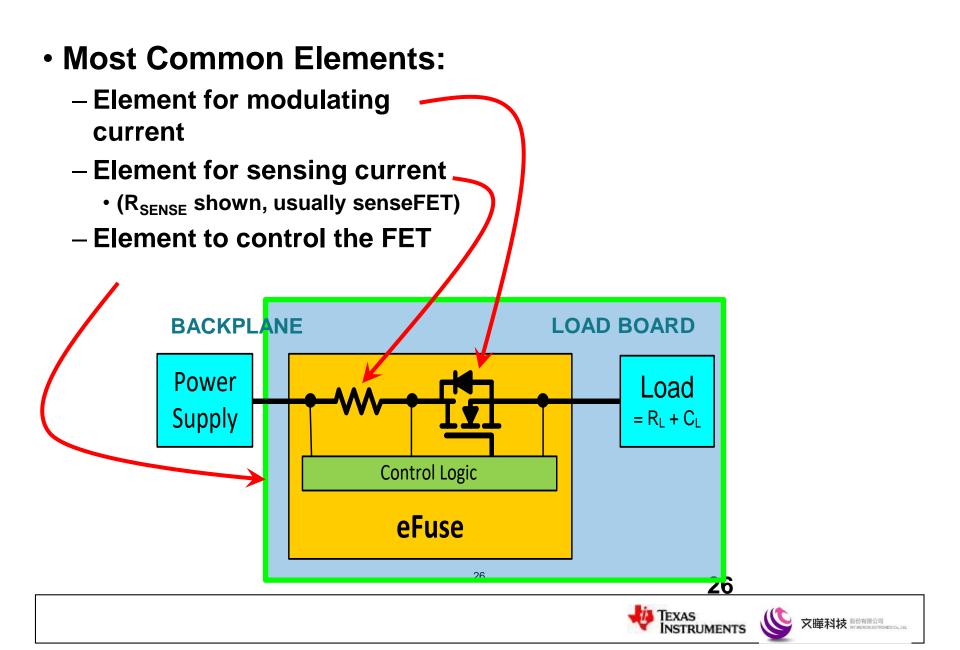
- All wires are inductive
- Long Supply Leads can have significant L
- Lab Test Environment Usually Worse Than Final Application !
 - Reason for TVS and diodes on most TI EVMs
- When the FET turns off, voltage spikes occur
- To counter inductive spikes from supply / load leads
 - Caps and/or TVS at UUT Input to clamp positive spike
 - Schottky Clamp across output to clamp negative spike

Positive Low Voltage Protection TI Device Portfolio

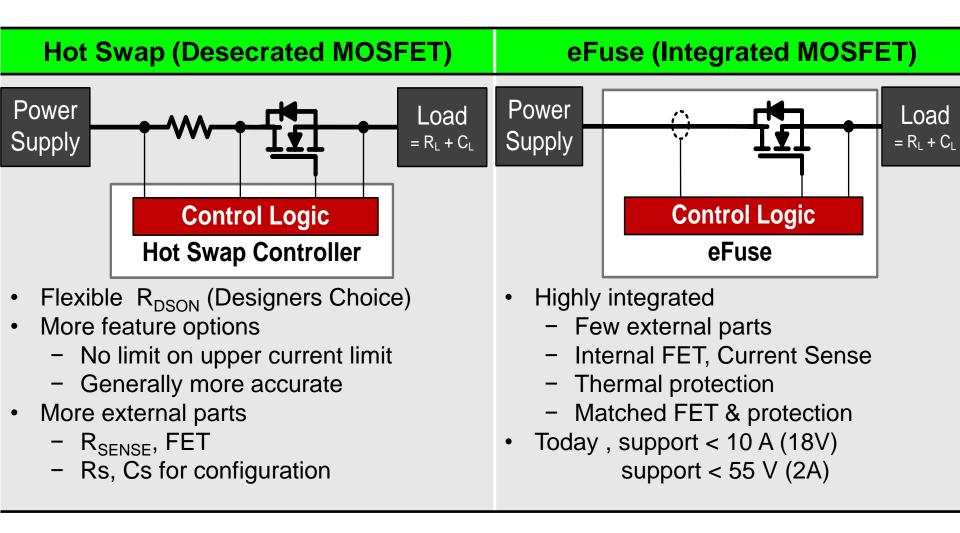
PART	Input Range	Package	V _{THRESH} (mV)	SOA Prot.	ον	I2C	PG	lmon Acc.
TPS2420		QFN16 (4x4mm)	Internal FET	Yes	No	No	Lo	17%@2A
TPS2590/910		QFN16 (4x4mm)	R_{DSON} typ. = 30 m Ω I_{LIMIT} = ±10%	Yes	No	No	-	na
TPS2421-1/2	3 to 20	SOIC8	@ 2 A	Yes	No	No	Lo	na
TPS2592A/B		QFN10	na	No	Yes	No	No	na
TPS2593A/B		(3x3 mm)	Fixed Ilimit	No	Yes	No		na
TPS24720		QFN16 (3x3)	Prog	Yes	Yes	No	Lo	Prog
TPS24710/1/2/3	2.5 to 18	MSOP10	25 ± 10%	Yes	No	No	l/l/h/h	na
TPS24700/1		MSOP8	25±10%	No	No	No	Lo	na
LM25066		LLP24 (4x5mm)	25 ± 10%	Yes	Yes	Yes	Hi	2.40%
LM25066A/i	- 2.9 to 17	LLP24 (4x5mm)	46.5 ± 11.8%	Yes	Yes	Yes	Hi	1.00%
LM25069-1/2	2.91017	MSOP10	50 ± 10%	Yes	Yes	No	Hi	na
LM25061-1/2		MSOP10	50 ± 10%	Yes	No	No	Hi	Na
TPS2480/1	9 to 26	PW20	25	Yes	No	Yes	Hi	1%
TPS2482/3	9 to 36	PW20	25	Yes	No	Yes	Hi	0.5%

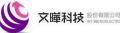
Device Features/Options TI IMON Devices vs. Output Type


Part	V _{IN}	Current Monitor Output	Accuracy Neglecting external component tolerances
TPS2358/9 TPS2458/9 TPS2456	8.5 – 17 V	$I_{LOAD} = \frac{V_{MON}I_{LIMIT}}{675mV}$	±4% _{FS}
TPS2420	2.8 – 20 V	$I_{\text{LOAD}} = I_{\text{MON}} \times 61000$	± 8.2%
TPS2492/3	9 – 80 V	$I_{LOAD} = \frac{V_{MON}}{48 \times R_{SENSE}}$	± 6%
LM25066/A	2.9 – 17 V	PMBus Output	$\pm 2.4\%_{FS} / \pm 1\%_{FS}$
LM5064	-80 to -18	PMBus Output	$\pm 3\%_{FS}$
LM5066	10 to 80	PMBus Output	$\pm 3\%_{FS}$
TPS2480/1	9–26 V	Digital I ² C Output	± 1%

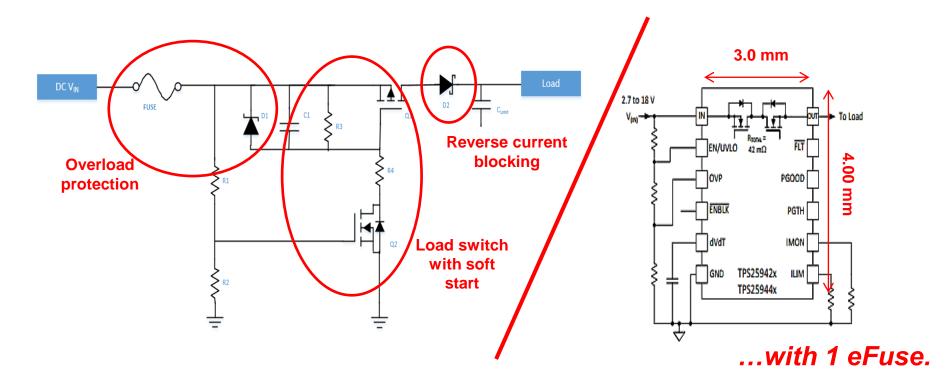


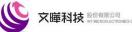
LM5069EVM-627


Reverse Current Blocking, Surge Clamping, Reverse Connection Protection


What is an eFuse: Integrated Hotswap IC

Hot Swap VS eFuse





Discrete Fuse Protection Circuit

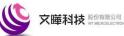
Replace all these components...

Typical Applications for eFuse

Enterprise Class SSD

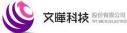
inter (1)		
Treate (1)		

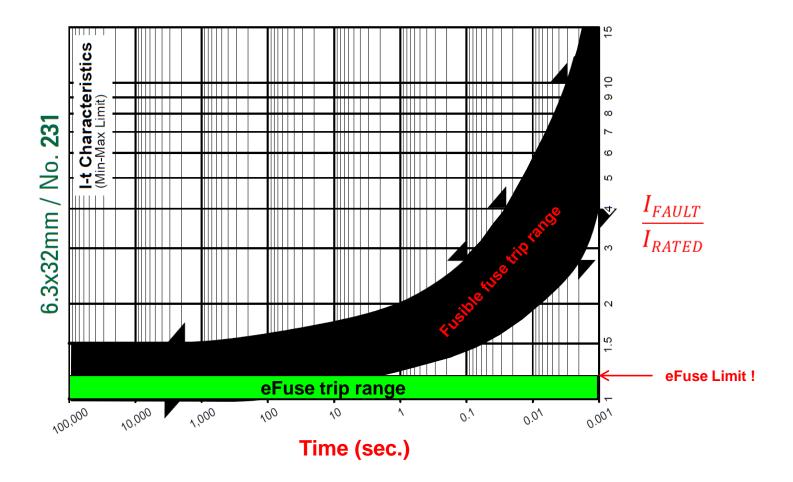
Storage Server Chassis



Set-Top Box DVD Player Internet TV

Appliances




Why not use a fuse ?

- Slow
- Inaccurate
- Lossy
- Leave a load unpowered after event

"Fast Blo Fuse "Trip time vs Current eFuse vs fuse

• Time and trip limit inaccuracies mean bigger power supplies

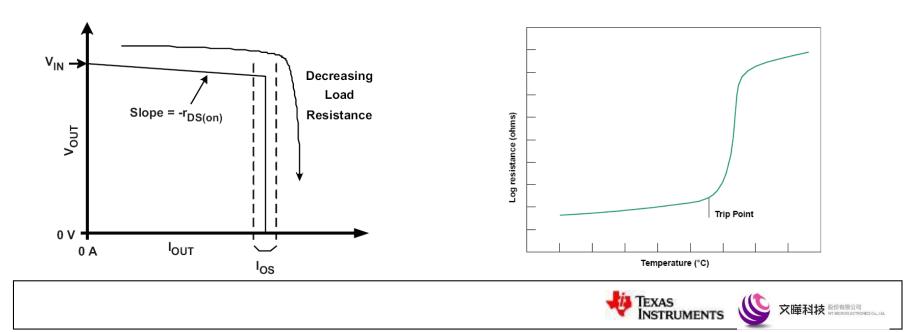
Fuses are sloweven the fast ones

Limits for Pre-					
Rated Current	1.0 x I _N ¹	1.5 x l _n	2.75 x I _N	4 x I _n	10 x I _N
2.00 A 16.00 A	> 1 h	< 30 min	2 ms 100 ms	1 ms 25 ms	< 3 ms

eFuse Performance

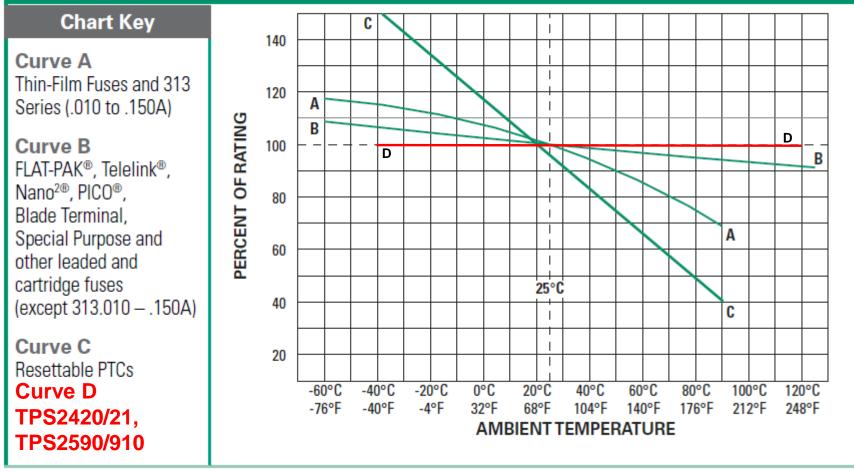
- I_{LIMIT} is programmable, predictable, and stable over temp
- Bus droop and supply stress reduced by tight over current tolerance

Fuses are Lossy


- Higher resistance -> more energy -> more heat -> higher OPEX
- 13x more power lost with fuse !
 - 800 mV/2A = 400 m Ω vs. eFuse @ 30 m Ω
- Lifetime cost of 1 Watt = \$2 to \$18 (customer supplied numbers)
 - Includes energy cost, distribution infrastructure, HVAC, product life

Rated	Amp	Voltage	Voltage Drop	Power Dissi	pation	Melting Integral
Current	Code	Rating	1.0 x l _N 🐼	1.0 x l _N 🐼		10 x I _N 🐼
Little Fuse 231S	eries		max. (mV)	max. (W	-	max. (A ² s)
2.00 A	1200	500 V	800	3.0	0.12	0.35
2.50 A	1250	500 V	800	3.0	0.19	0.44
3.15 A	1315	500 V	800	3.0	0.30	0.75
4.00 A 2	1400	500 V	700	3.6	0.48	1.6
5.00 A ²	1500	500 V	600	3.6	0.75	2.5
6.30 A 2	1630	500 V	600	3.6	1.19	5
8.00 A ²	1800	500 V	600	5.2	$\overline{}$	5 10
10.00 A ²	2100	500 V	500	5.2	4 7	20
12.50 A 2	2125	500 V	500	6.3		38
16.00 A 1,2	2160	500 V	480	6.3		68
			Lowe	er Losses using TF	S2590 (<mark>30 mΩ)</mark>
			Lowe	TEXAS		30 mΩ) () 文曄科技 ^{El9#}

eFuse vs.Polyfuse


- eFuse (USB power switch)
 - Current based ILIMIT
 - Stable, accurate (20% 30%) I_{LIMIT}
 - Fixed or Programmable I_{LIMIT}
 - Repeatable ILIMITO
 - Fast (< 1.5 us typ)</p>
 - Wide temp range
 - -40 ° to +125 C°

- Polyfuse
 - Temp based I_{LIMIT}
 - Sloppy, variable I_{LIMIT}
 - No Programmable I_{LIMIT}
 - R_{ON} Increases with each event
 - Slow to trip (several ms)
 - Not usable above 85 C°
 - Auto resets after trip event

Polyfuses (PTC Devices) Require derating

Temperature Derating Curves Comparing PTCs to Fuses

文曄科技 股份有限公司

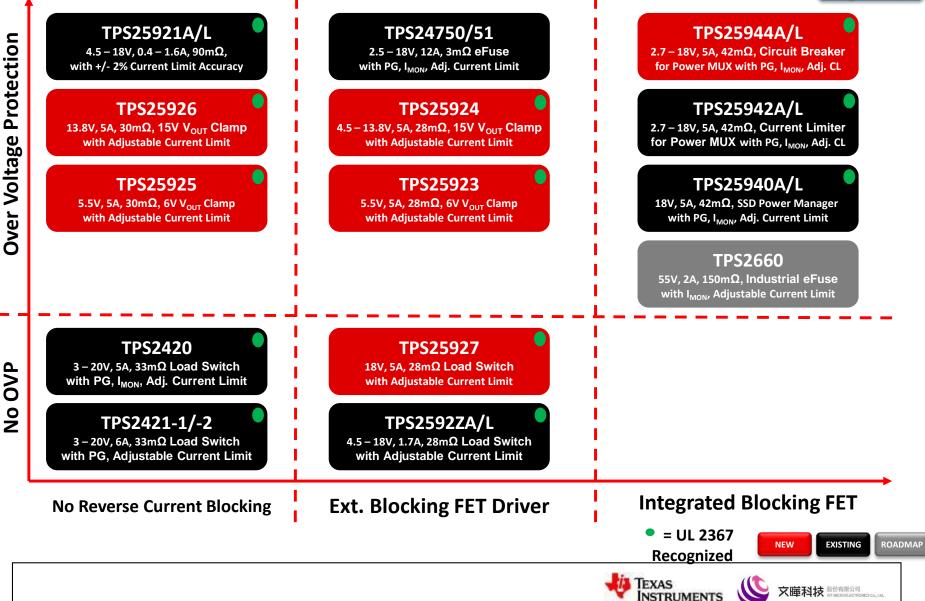
Polyfuse Summary

- Slow
- Lossy 2x regular fuse
- Inaccurate
- Each OC event increases resistance
- Not suitable for high temp.
 - R increases with Temp.-
- Resets after OC event
- Low Cost
- Can provide Safety Agency compliance

 UL, IEC, CSA

Common Circuit Protection

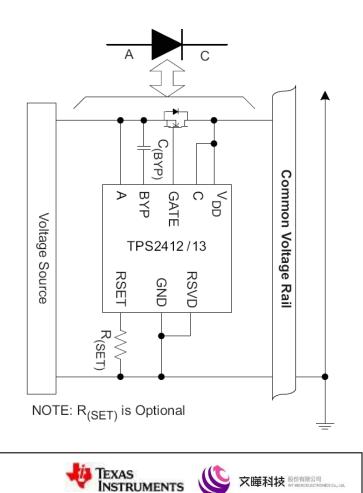
Fuses	Polyfuse (PTC)	Texas Instruments eFuses
 Physically breaks once tripped, only one time use (Not resettable) Fast acting / time delay trip System is offline until fuse is physically replaced 	 Temp-based current limit Auto-resets after fault Resistance increases with temp and after each fault Slow response/trip after fault (Several ms) Time-delay trip only 	 High accuracy adjustable current limit (up to ±2%) Fast trip (<1.5 us typ) UL recognized devices Able to auto retry (PTC) or latch off (fuse) after fault Fault reporting, PG, IMON
		TPS25940 Estats Instruments



S Co., Ltd.

eFuses (Integrated FET)

Need more? See Parametric Search:

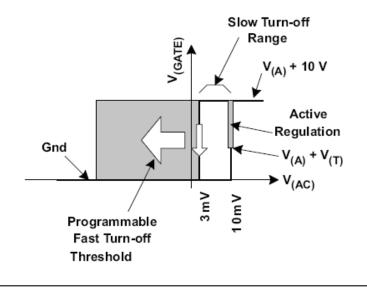


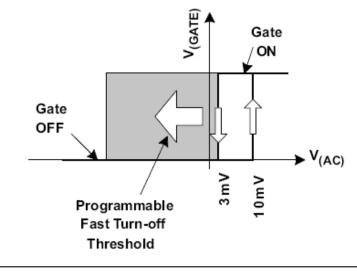
Device Features/Options ORing Control - What is it and why do it ?

• What is it ?

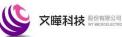
- Make a FET act like a diode

- No more, no less
- A simple concept
- A challenge to implement
- Why do it ?
 - Save Energy, \$\$\$
 - Improve PS margin

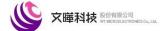

Device Features/Options ORing Control – Linear vs. Hysteretic


Linear Control

- Regulates V_{AC} (V_{SD}) to 10 mV FET on if $V_{AC} > 10 \text{ mV}$ ۰
- Reverse current less likely
- May not like reactive loads


Hysteretic Control

- FET off if $V_{AC} < 3 \text{ mV}$
- Fast off if V_{AC} goes negative •
- Less sensitive to reactive loads •
- More prone to light load oscillation ٠



Oring Control Selection guide

Device	Description	Channels	V _{IN} Range (V)	Enable/ Shutdown	UV	OV	Fault	PG	ORing Linear Gate Drive
TPS2410	ORing FET controller/MUX controller	1	0.8 to 16.5	1H	~	~	~	~	✓
TPS2411	ORing FET controller/MUX controller	1	0.8 to 16.5	1H					
TPS2412	ORing FET controller	1	0.8 to 16.5						
TPS2413	ORing FET controller	1	0.8 to 16.5						
TPS2419	ORing FET controller with OV/enable	1	3 to 16.5	1H		~			
LM5050-1	Positive HV ORing controller with AUX input	1	5 to 80	L					 ✓
LM5050-2	Positive HV ORing controller with FET test	1	6 to 80	L			~		✓
LM5051	Negative HV ORing controller with FET test	1	-6 to -100	L			~		v
TPS24740/1/2	High performance hotswap/ORing controller	1	2.5 to 18	1H	~	~	~	~	
TPS2456/A	Inrush/reverse current controller for dual sources	2	8.5 to 15	2H	~		~	~	~
TPS2358	Dual 12-V/3.3-V hotswap/ORing controller	2	8.5 to 15	2L					
TPS2359	Dual 12-V/3.3-V hotswap/ORing controller	2	8.5 to 15	Via I ² C					

Thanks You !

